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From Monotonic to Oscillatory Decay of 
Correlations: Analytical Approximation for 
the Two-Dimensional, One-Component Plasma 
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An approximate evaluation of the pair distribution and the structure factor is 
performed analytically for the two-dimensional, one-component plasma at any 
value of the coupling constant F. The approximate distribution remains positive 
and satisfies three sum rules, including the compressibility one. When F--, 0 or 
F ~  2, exact results are found. At F = 2  the transition from monotonic (F<2)  
to oscillatory (F> 2) decay of correlations takes place. Comparison with the 
Monte Carlo simulations shows good agreement for 0 < F < 4. 
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1. I N T R O D U C T I O N  

We s tudy the two-d imens iona l ,  o n e - c o m p o n e n t  p l a s m a  at  equi l ibr ium.  We 
thus cons ider  ident ical  par t ic les  of charge  e in terac t ing  via the logar i thmic  
C o u l o m b  po ten t ia l  

e2v(r )= - e  2 In (r /L)  (1.1) 

and  e m b e d d e d  in a uni form neut ra l iz ing  b a c k g r o u n d  of oppos i t e  charge (L 

is a length scale, r the d is tance  be tween the part icles) .  
A r emarkab l e  fact a b o u t  this two-d imens iona l  p l a sma  is tha t  in 

add i t i on  to the h igh - t empera tu re  l imit ,  where the D e bye -H f i c ke l  theory  
applies,  its equi l ib r ium d i s t r ibu t ion  funct ions can be also exact ly  eva lua ted  
at  the finite t empera tu re  To=e2 /2kB  (k  B is Bo l t zmann ' s  cons tant ) .  (1) O u r  

Institute of Theoretical Physics, University of Warsaw, 00-681 Warsaw, Poland. 
2 Laboratoire de Physique Thborique et Hautes Energies, Universit6 de Paris-Sud, 91405 

Orsay, France. 

489 

0022-4715/87/0500-0489505.00/0 �9 1987 Plenum Publishing Corporation 
822/47/3-4-13 



490 Piasecki and Levesque 

object here is to use the knowledge of the reduced distributions at T o to 
find an approximate equation for the pair distribution at an arbitrary 
temperature T. To this end, we consider the BGY hierarchy equation 
relating the two- and three-particle number densities P2 and P3: 

[~-~1 + I'Ov(r12)] pe(r1, r2 J 

0v(G3) F 
= - r j  dr3 a--7777   [P3Ir,, r2, r3 rr)-p2Ir , ,  re Iv)3 {1.2) 

Here F =  e2/kB T is the dimensionless coupling constant, whose value at 
T =  To equals 2. The translational invariance of the equilibrium state 
enables us to write the cluster decomposition of the densities P2 and P3 in 
the form 

p2( r l ,  r 2 t / ' )  = pe r1  -I- h2(r12 IF)] (1.3) 

p3(rl, re, r3 IF )=  p3[he(r12 IF)+  h2(r13 IF)+  he(re3 pF) 

+ h3(rle, r,3 JV)] (1.4) 

where p is the constant one-particle density, ro = r i -  rj, and r o. = Irij], i, j = 
1, 2 ..... From Eq. (1.2) we find that the dimensionless correlation functions 
h 2 and h 3 are related to each other by equation 

[ 6~ FC~v(r,2)] 
~ r l q -  h2(r12 IF) 

63r12 d 

~)(r13) 
- F f d r 3 ~ r L ~  [phg(r23 jF)+6(r23)+ph3(r,z, rl3 IF)] (1.5) 

The Coulomb potential satisfies the Poisson equation 

3v(r) = -2tea(r) (1.6) 

Combining this with the perfect screening relation 

one finds 

f dr [ph2(r IV) § 6(r)] = 0 (1.7) 

8v (r 13_.____~) f dr3 [ph2(r23 IF) + 8(r23)] 
0r~3 

,. r 63v(r12) (.m 
= - z r c P * ~ r 1 2  Jrl2 dr rh2(r IF) (1.8) 
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Equation (1.5) can be thus rewritten in the form 

( 0  r12\ ,, ~r~__2 f f  drrh2(r,F ) 
~rl--[ '~12)  h2(r,2 ]/')-k- zTZpIr~ 2 ,2 

f .  r13 = p Y  ar3.-sT-h3(r12, r13 IF) (1.9) 
r13 

where the explicit form of v(r) has been used. 

2. A P P R O X I M A T I O N  A N D  ITS A N A L Y T I C A L  SOLUTION 

At F =  2, the two-particle correlation function reads 

h2(rl2 12) = -exp(--Tzpr~2 ) (2.1) 

Equation (1.9) implies that 

f 10  p dr3 rl--23 h3(r12, 12) =-~ 0rl 2 r~ 3 r13 - - h 2 ( r z 2  12) (2.2) 

The three-particle correlation function 

h3(r~2, r13 12) = 2 Re{exp[ - zp(r22 + r23 - F12r13ei~ ] } 
(2.3) 

COS 0 = (r12 "r13)/r12r13 

found by a direct calculation from the canonical distribution, can be shown 
to satisfy Eq. (2.2). We shall now make an important step by postulating 
the validity of Eq. (2.2) for all temperatures, 

p f dr3r~3r~3 1 h3(r12, r13 [F)=~O--~2h2(r12 [F) (2.4) 

Equation (1.9), when combined with Eq. (2.4), yields a closed equation for 
h2: 

d Ir)+2=]rfr'dx Lr)=0 

The closure relation (2.4) has the obvious advantage of being exact at 
F =  2. Moreover, it is consistent with the three sum rules satisfied by the 
exact two-particle correlations at any value of F(2): 

1. Perfect screening: 

f dr h 2 ( r l F  ) = --1 (2.6a) P 
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2. Stillinger-Lovett rule: 

p f dr r2h2(r[ F) = -2 /~pF (2.6b) 

3. Compressibility sum rule: 

p f dr r4h2(rlI ") = -16(1 - �88 2 ( 2 . 6 c )  

Indeed, multiplying Eq. (2.5) by r n and integrating over the position 
space, one finds 

2~pF 
f drrnh2(r l r ) - (n+ 2)(-n-~---nF/2)f drrn+2h2(r]r) (2.7) 

provided the moments under study exist. For n = 0  and 2, Eq. (2.7) 
reproduces correctly the relations between the moments of h2 in full 
accordance with Eq. (2.6), which is quite encouraging. In fact, the 
compressibility sum rule usually causes difficulties in approximation 
schemes. For instance, it is violated by the HNC approximation. (3) 

The great advantage of Eq. (2.5) is that it can be solved, yielding a 
closed analytical formula for h2(rlF) for any F. It is convenient to multiply 
it by r and differentiate once with respect to this variable. A second-order 
differential equation is obtained in this way, which, when written in terms 
of the dimensionless distance 

z = r(gp) 1/2 (2.8) 

takes the form 

[z d~2 + 2 d (1 - /~)~zz-4~t] h2(zlF)=O (2.9) 

where 

I~ = F/(2 - F) (2.10) 

Equation (2.9) is known to lead to the Bessel functions. Requiring that 

h~(o I~,)= -1 (2.11) 

and h 2 ( z [ # ) - - ~ 0  , for z--* oo, selects the desired solution. One has to 
distinguish between two cases. 
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2.1.  T h e  Case  I" < 2 

In this region (# > 0) the pair correlation function reads 

2 (z x//-fi) ~ Ku(2z x/-~) (2.12) hdz I ~ )  = - F ( ~ )  

where the standard notation for the gamma and Bessel functions has been 
used. 

The inequality 

d 
-d-s [x"K,(x)] =x~K,_l(x)>O ( x > 0 )  (2.13) 

shows that the pair distribution 

g2= 1 +h2 (2.14) 

attains its minimum at z = 0. In view of Eq. (2.11), we thus conclude that 

g2(z[F)>O for z > 0  (2.15) 

which is quite satisfactory. This shows in particular that in the high- 
temperature limit F ~  0, the solution (2.12) approaches the Debye-Hiickel 
pair distribution 

g~n(z) --- 1 - FKo(z x/2 1 +) (2.16) 

in a nonuniform way. Indeed, when x---, O, Ko(x) diverges logarithmically 
to +o% so that g~H becomes negative for short distances. As we have 
shown, the approximation (2.12) guarantees the positivity of g2 at 
arbitrarily high temperatures. For z ~ 0% gz(z[F) tends monotonically to 
1, in accordance with the formula 

(Z +N,~) k~++ I/2 exp(--z  .,/-~) (2.17) g2(z I F )  z ~o~ 1 - -  

It can be checked that h 2 given by Eq. (2.12) satisfies the sum rules 
(2.6). 

Let us finally evaluate the corresponding static structure factor 

S(qlF) = 1 +/~2(q I F) (2.18) 
where 

h2Cq{F) = 2 foo dz ZhR(ZIF) Jo(qz) (2.19) 
Jo 
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is the Fourier transform of h2(zlff ). Using Eq. (2.12), we find 

1, qZ ( 2 - -l~" 
S ( q I F ) = I - - 2 F  1 (2~2F,  1, - - ~ - \ - - - - ~ j )  ( F < 2 )  (2.20) 

where 2F1 is the Gauss hypergeometric function. In accordance with the 
Stillinger-Lovett rule, the small-q expansion of S(qJ F) reads 

q2 F q2 2 
S ( q l F ) = ~ - - ~ - ( 1 - ~ ) ( ~ - F )  + "" . (2.21) 

In order to understand how the case F =  2, 

S(q 12) = 1 - exp( - q2/4) (2.22) 

is approached, it is convenient to consider the sequence 

F N = 2 - 2 / N ,  N = 2 ,  3 .... (2.23) 

Equation (2.19) then simplifies to 

S(q[ Fs)  = 1 - [1 q -q2 /4 (N-  l ) ] - N  (2.24) 

In the complex q plane the singularities of S(qJFN) lie on the imaginary 
axis at points 

qN = +2i(N--  1) 1/2 (2.25) 

N when N-*  0% q + _  run away to infinity, and the structure factor acquires 
the Gaussian form (2.22). One can expect that a qualitative change in the 
behavior of S(qlF),  and thus also of g(zlF),  will occur when the point 
F =  2 is crossed. 

2.2. The Case  F > 2  

For negative values of/~ 

-I~ = F / ( F -  2) = v > 1 (2.26) 

the physically relevant solution of Eq. (2.9) reads 

h2(z[ v) = - F ( 1  + v)(zv) v Jv(2z ~ )  (2.27) 

Let us begin the discussion of this result by proving the positivity of 
the corresponding pair distribution g2 = 1 + h2. Using the integral represen- 
tation of the Bessel function 

(x/2)v ;,/2 
dO sin 2v 0 cos(x cos 0) (2.28) 

& ( x )  = 2 r ( v  + 1/2) r(1/2) !~0 
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one readily finds the required inequality 

2F(1 + v) f~/2 
dO sin 2v 0 = ! (2.29) Ih21 ~< F(v + 1/2) F(1/2) ~o 

Hence g2(zlF) > 0 for z > 0. The approximation studied here preserves thus 
the positivity of the pair distribution for any value of F. This should be 
stressed, as this property is easily lost in approximate theories. 

The Bessel functions Jv are known to show oscillatory behavior. In 
particular, when z ~ o% we find the asymptotic formula 

h2(ZIY)--F(1-[-y)(z~-~)_v 1/2 I 7cQ ~)l z~oo ~ cos 2 z x / ~ -  5 v+  (2.30) 

Within the approximation studied here the temperature To = e2/2kB thus 
occurs as the transition point between the region of monotonically 
vanishing correlations ( F <  2) and oscillating correlations with powerlike 
falloff ( F >  2). In order to analyze the underlying mechanism, let us study 
S(ql F) for F >  2. The evaluation of the Fourier transform (2.19) yields 

{1 - [ 1 - ~ ( r - 2 )  
S(qIF)= 1, 

q2/F]2/(r 2), ~q-<F/(F-2)  
(2.31) 

�88 > IT(F-  2) 

The singularities of the structure factor now lie on the real axis, at points 

( A )  ,j2 q+, = _+.2 (2.32) 

at which S(qlF) attains its asymptotic value 

S ( o o L r )  = 1 

Hence, when the temperature is lowered, they move first along the 
imaginary axis, escaping to _+ ioo for F ~ 2--0,  and, once the temperature 
T o= e2/2kB is crossed, they reappear on the real axis, approaching, for 
F--, o% the limiting positions + 2. Such a picture is quite different from the 
one usually proposed. (4) It is, of course, an open question whether the 
transition mechanism corresponding to the audaciously adopted closure 
relation (2.4) is a correct one, but it is certainly a possible one. Clearly, 
when F ~  2 + 0, formula (2.31) reproduces the Gaussian form (2.22). One 
can also check that the sum rules (2.6) are satisfied by h2 given by 
Eq. (2.27). The smaU-q expansion of the structure factor (2.31) is thus also 
given by Eq. (2.21). 
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When F--+ 0% v --+ 1, and we find 

g2(z, oo) = 1 -- (l/z) Jl(2z) (2.33) 

It seems to be a curious coincidence that the same formula has been found 
within a quite different approximation scheme, where, however, oscillations 
are found already at F =  2. (5) 

Before closing this section, let us examine the internal energy density 
u, related to the correlation function h2 by 

fo ~ z u = --kB TF dz zh2(z]F) In L(Tcp)l/--------~ (2.34) 

The evaluation of the integral occurring in Eq. (2.34) yields the following 
result: 

k~T-  -C-ln(~pL2)+t~ ~ --In ~ + ~ F - - O ( 2 - F )  

(2.35) 

where C = 0.577215... is Euler's constant, tp(x) is the Euler psi function and 

0 ( 2 - F ) = { ~  forf~ F<F>22 

When F - ,  0 we find 

u/kB T= JF[ln(rcpL z) + 2C + In(F) - ln(2)] (2.36) 

as predicted by the Debye-Hiickel theory. At F =  2, all the derivatives of 
the energy density u with respect to F exist and are continuous. The 
asymptotic expansion around F =  2 has the form 

e2 2 /1  1\ 
u=-~[-C-ln(rrpL )+k~,-~)  

~ B2k(2--F'~ 2(k-l, ] 
- e=l -~-  k- - -F-J  + .-- (2.37) 

B2k are the Bernoulli numbers. The series (2.37) is divergent, showing that 
at T-- To(F= 2) the energy density u is not analytic. From the expansion 
(2.37) we readily find the specific heat at F =  2: 

c = = - -  (2.38) 
r=ro 4 
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This should be compared with the exact result (1) 

c = kB(ln 2 - rc2/24) = 0.2813 lk~ (2.39) 

The discrepancy between (2.39) and (2.38) shows that the neighborhood of 
the point F = 2  is not quite accurately represented by our approximate 
equation (2.5). This is even more clearly seen when one compares the 
expansions around F =  2 for the correlation function. Equation (2.5) leads 
to the asymptotoc series 

] t 40, 

The exact expansion begins as 

z2{ hz(zIF)= - e  l + [ ln(za)+C-Ei(-z2)e  z2 

+�89189189 . . .} (2.41) 

where Ei is the exponential integral function. In Eq. (2.40) the dominant 
correction has the structure of a polynomial multiplying the Gaussian 
exp(-z2),  whereas in Eq. (2.41) the analogous term decays at large distan- 
ces as exp(-z2/2).  In order to further elucidate the consequences of the 
simple closure relation (2.4), we compare in the next section the 
approximate formulas for g2(z] F) and S(q] F) derived here with the results 
obtained by the Monte Carlo simulation of the system. 

3. C O M P A R I S O N  W I T H  S I M U L A T I O N  RESULTS: 
C O N C L U S I O N S  

This section is devoted to establishing the domain of validity of the 
method described in the preceding section. This is done by comparins the 
two-body correlation functions calculated from Eq. (2.9) and from Monte 
Carlo (MC) simulations. The MC simulations were carried out for systems 
of 256 particles confined on the surface of a three-dimensional sphere, 
following the procedure described in Ref. 6. The numbers of configurations 
generated in the MC runs were, respectively, 5 x 105 at F =  0.5, 1.5, 2.8, and 
10/3; 2 x 105 at F =  2; and 1 x 106 at F =  6. These values of the MC sam- 
plings were sufficient to achieve a precision of ~ 1-2% on the two-body 
distribution function gz(r) and on the internal energy. From the MC data 
for g2(r), the static structure factor S(k) can be evaluated by a Fourier 
transform (cf. Ref. 6). In Figs. 1 and 2 we have plotted g2(r) and S(k), 
respectively, obtained from (2.9), by MC simulations and by the HNC 
approximations. (3) These figures clearly show the domain of validity of the 
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Fig. 1. Distribution function g2(r) versus r/a=z [a=(zcp) -1/2] at F=(a) 0.5, (b) 1.5, 
(c) 2.8, (d) 6. (- -) Present theory; ( ) HNC approximation; (+) MC data. 
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Fig. 2. 
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Static structure factor S ( k )  versus ka  = q for F =  (a) 0.5, (b) 1.5, (c) 2.8, (d) 6. Sym- 
bols have the same meaning as in Fig. 1. 
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approximation presented in this article. From the discussion of Section 2 
we know that this approximation gives exact values of gz(r) for F =  2 and 
in the limit F--+ 0. From Figs. la, lb, 2a, and 2b and from Table I we see 
that also gives accurate g2(r) and S(k) and a good estimation of u for the 
values of F between 0 and 2. The analytical solutions of (2.9) are in 
agreement with the MC data at the same degree of accuracy as the 
numerical solutions of the HNC equation. For 2 < F <  4, (see Figs. lc and 
2c) the solutions of (2.9) stay in quantitative agreement with the MC 
results, in spite of the fact that they lead to S(k) functions constant (equal 
to 1) for k > [4FTrp/(F- 2)] 1/2. The disagreement of the results of the two 
approximate theories [HNC equation and Eq. (2.9)1 with the MC data is 
obvious for F =  6 (see Figs. ld and 2d). Clearly, the figures show that the 
inadequacy of the approximation discussed here is due to the bad descrip- 
tion of the correlations at small distances for all values of F for which the 
comparison is done. The HNC approximation gives a better estimation of 
g2(r) for z <0.5. But, because the g2(r) functions calculated from (2.9) 
satisfy the three exact sum rules (2.6), the low-k values of S(k) functions 
are in an excellent agreement with the MC data. The fact that the sum rule 
(2.6) is satisfied ensures that the compressibility is exactly determined by 
the present theory. 

In conclusion, the approximate theory developed in this article has 
roughly the same domain of validity as other methods proposed in the 
literature (5'~'8) and it has the obvious advantage of giving an analytical 
representation of g2(r) and S(k) of the 2D-OCP system that satisfy three 
exact sum rules and becomes exact both for F ~ 0  and F = 2 .  The 
analytical behavior of the solution of (2.9) around F =  2 gives a possible 
description of the transition between two regimes of the decay of 

Table 1. Internal Energy per Particle a 

u/k B T 

F M C  d a t a  Eq .  (2 .35)  H N C  a p p r o x i m a t i o n  

0.5 + 0.049 __% 0.001 0 .04867  0 .0518  

1.0 - 0 .034 __+ 0.001 - -  0 .0386  - 0 .0302  

1.5 - 0 . 1 5 3  ___ 0.001 - 0 . 1 5 7 4  - 0 . 1 4 5 9  

2 - 0 .290  __+ 0 .002 - 0 .2886  - 0 .278 

2.8 - 0 . 5 2 8  +_ 0.001 - 0 . 5 0 8 8  - 0 . 5 0 8 3  

3 .33333 - 0 . 6 9 6  _+ 0.001 - 0 . 6 5 8 6  - 0 . 6 6 9 9  

6 - 1.582 _+ 0 .0005 - 1 .4192 - 1.526 

a T h e  v a l u e s  o f  u/kB T a r e  c a l c u l a t e d  w i t h  t h e  c h o i c e  L = a =  (rip) 1/2. 
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correlations: a mono ton i c  exponential  decay ( F < 2 )  and an oscillatory 
algebraic decay ( F > 2 ) .  The two decay laws have been shown to be 
compatible  with the exact hierarchy equat ions satisfied by the reduced 
distribution functions3 9) 
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